

    
      
          
            
  
OpenFarmsubsidies - EU Farmsubsidy Scrapers

This is the project documentation for openfarmsubsidies, a new approach on
building an open scraper infrastructure and user interface for
researching EU farmsubsidy payments, build upon the experiences made during
work on historically grown Farmsubsidy.org
tech infrastructure [http://farmsubsidy.readthedocs.org].

The project has its own organization on GitHub [https://github.com/openfarmsubsidies]
and consists of the following repositories:









	Name (GitHub)
	Description
	Status
	Last Status Update




	openfarmsubsidies-scraper [https://github.com/openfarmsubsidies/scraper]
	Scraping
	Beta
	2017-06-28


	openfarmsubsidies-elastic [https://github.com/openfarmsubsidies/elastic]
	Search Index
	Beta
	2017-06-28


	openfarmsubsidies-backend-api [https://github.com/openfarmsubsidies/backend-api]
	Backend/API
	Beta
	2017-06-28


	openfarmsubsidies-frontend [https://github.com/openfarmsubsidies/frontend]
	Frontend
	Beta
	2017-06-28





This documentation provides guidance for installation, setup and technical
aspects for the different sub modules.

Contents:



	Scraper (Django/DDS)
	Introduction

	Installation

	Configuration

	Scraper Handling

	Data Format

	Creating the Countries Endpoint





	Search Index (Elastic)
	Installation

	Index Creation

	Indexing Documents

	Searching the Index





	Backend/API (Python/Flask)
	Installation

	API





	Frontend (Boostrap/Javascript)
	Installation

	Development





	Deployment
	Server Setup












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Scraper (Django/DDS)


Introduction

The scraping infrastructure is build on Python/Django and is using the
djang-dynamic-scraper [https://github.com/holgerd77/django-dynamic-scraper]
scraping library at its core.

Scrapers for the various EU member state agencies databases are build and maintained
within the Django admin interface.

[image: _images/screenshot_django-admin_scraper_list.png]



Installation

The scraping infrastructure project can be installed by cloning the
GitHub [https://github.com/openfarmsubsidies/scraper] repository and
install the requirements into a Python 3.5 virtualenv with:

pip install -r requirements.txt
pip install -r requirements_dev.txt # DEV requirements





The project uses the following main Python/Django libraries:


	Django 1.10 [https://www.djangoproject.com/]

	Scrapy 1.4 [http://scrapy.org/]

	Django Dynamic Scraper (DDS) 0.13






Configuration

The following environment variables have to be found in your shell environment,
e.g. by adding lines like export OPENFARMSUBSIDIES_SECRET_KEY="..." to the
.bash_profile file:








	Key
	Description
	Place




	OPENFARMSUBSIDIES_SECRET_KEY | Project specific Django secret key
	settings.py





Starting a local Django server should now provide access to the scraper management
admin console via the browser (go to 127.0.0.1:8000):

python manage.py runserver








Scraper Handling


Importing/exporting Scrapers

Scrapers can be found in the scraper_dumps directory inside the repository and imported
with the following command:

python manage.py loaddata scraper_dumps/farmsubsidy_scraper_dump_YYYY-MM-DD_dds_[DDS_VERSION_NUMBER].json #Generic
python manage.py loaddata scraper_dumps/farmsubsidy_scraper_dump_2016-01-18_dds_v094.json #Example






Note

It is recommended to match the project installation DDS version with the version from the scraper
dump, otherwise DB changes during DDS version changes have to be looked at closely in the
DDS release notes [http://django-dynamic-scraper.readthedocs.org/en/latest/development.html#releasenotes]
and manual adoptions to the JSON dump format might be necessary.






Creating a new Scraper

For creating scrapers a ScrapedObjectClass Payment has to be defined in the Django admin
(see the definition from the scraper dumps) in addition
to the models.py definition, defining the data structure of the scraped payment data.
See the Data Format section for description of the different payment attributes.

Scrapers are created per-country wise as Scraper objects in the Django admin and are referenced in additional
Country objects, representing a EU member states respectively the associated payments agency.

For further documentation and conceptional overview see the
DDS docs [http://django-dynamic-scraper.readthedocs.org/en/]




Running a Scraper

Scraper can be run from the command line with the following command:

scrapy crawl --output=data.json --output-format=jsonlines payment_spider -L DEBUG -a id=GB -a max_items_read=4 -a max_pages_read=2





This will run the scraper connected to the Agency in the Django admin with the id GB and
write the output in a JSON Lines formatted file called data.json.

Usage options for scraping behaviour can be found in the corresponding  DDS doc section for
running/testing scrapers [http://django-dynamic-scraper.readthedocs.org/en/latest/getting_started.html#running-testing-your-scraper].






Data Format


Scraper Format Description

The following are the scraped object attributes of a Payment object. Note that some field
are either filled in with static values (like the country attribute) or are automatically
filled via external API (like the name_en) attribute and are not directly used in the
scraping process:









	Attribute
	Scraped Field
	Mandatory
	Description




	base
	Yes
	Yes
	Container atribute for element scraping, see DDS docs


	name
	Yes
	Yes
	Name of recipient scraped from the site, use both for en and non-en names


	name_en
	No
	No
	Use ONLY if name should be translated via Yandex API, add static placeholder processor


	country
	No
	Yes
	Always add, with static processor inserting the two-letter country code


	zip_code
	Yes
	No
	ZIP code of recipient


	town
	Yes
	Yes
	Town of recipient


	region
	Yes
	No
	Region of recipient


	year
	No
	Yes
	The year of the scraped data, add static placeholder processor


	amount_nc
	Yes
	Non-€-Country
	Use for scraping of non-€-country amounts


	nc_conv_date
	No
	Non-€-Country
	Always use this and following field together with static processor...


	nc_conv_rate
	No
	Non-€-Country
	...for non-€-countries


	amount_euro
	Yes(€)/No
	Yes
	Use for scraping of €-country amounts, otherwiese static processor


	sub_payments_nc
	Indirect
	No
	Use for scraping sub payments of non-€-countries if available (see extra expl.)


	sub_payments_euro
	Indirect(€)/No
	No
	Use for scraping sub payments of €-country amounts, otherwiese static processor


	sp-x (sp1,sp2,..)
	Yes
	No
	Additional helper attributes for sub payments, both € and non-€


	extra_dp_url_123
	Yes
	No
	Helper attributes for scraping additional data urls per payment, see DDS docs





Additional note on sub_payment scraping:

Sub payments are indirectly scraped via the sp-x fields and then added via placeholders into a static processor template of the
sub_payments_nc or sub_payments_euro field.

Only scrape sub payments if the two (without market measures)/three main agricultural subsidy pillars are listed,
otherwise things get divided into too small sections. Use the english naming translation in the following unified form
(for easier/useful faceting later on search):








	Payment Type
	Sub Payment Name
	Remarks




	European Agricultural Guarantee Fund (EAGF)
	EAGF (Direct Payments)
	Direct payments to farmers, largest part


	European Agricultural Fund for Rural Development (EAFRD)
	EAFRD (Rural Development)
	Environmental measures, sometimes: ELER, smaller part


	Market Measures (e.g. for milk, fruit market)
	Market Schemes
	Only sometimes





The scraped sub payments don’t have to sum up to the total subsidy sum, so you can also pick the 2/3 most
common ones. For other payments than the ones above use an english name translation.

The following is an exemplary static processor template for the Bulgarian scraper:

'static': 'EAGF (Direct Payments),{sp1} | EAFRD (Rural Development),{sp2} | Market Schemes,{sp3}'





In this case the scraper definition also has to provide entries with XPath definitions for the
sp1, sp2, sp3 and sp4 fields. The so-scraped values are then automatically added to the static
processor text replacing the placeholders.

General format for the sub_payment string:

'static': '[Name of SP1],{sp1} | [Name of SP2],{sp2} | ...'






Note

Is is possible to add up to six sub payment types to the scraper. The amounts of the sub payments doesn’t
have to add up to the total amount of the payment.






Output Format Description

Scraped items are saved with additional serialization customizations defined in the models.py module
as JSON Lines items, more or less (one additional processing is necessary) ready to be indexed in the
Elastic index.

If currency is scraped in national unit conversion rate and date is read from fixer.io [http://fixer.io/] API.

Data format looks like the following:

{
  "town": "PERTH",
  "amount_nc": 57444.0,
  "name": "\"A F Angelil T/A \"\"Cluny Estate\"\"\"",
  "amount_euro": 76126.11,
  "country": "GB",
  "sub_payments_euro": [{
    "amount": 32969.45,
    "name": "Rural Development"
  }, {
    "amount": 43156.83,
    "name": "Direct Aid"
  }, {
    "amount": 0.0,
    "name": "Market Schemes"
  }],
  "sub_payments_nc": [{
    "amount": 24878.42,
    "name": "Rural Development"
  }, {
    "amount": 32565.71,
    "name": "Direct Aid"
  }, {
    "amount": 0.0,
    "name": "Market Schemes"
  }],
  "year": 2015,
  "nc_conv_rate": 0.75459,
  "nc_conv_date": "2016-01-22",
  "zip_code": "PH2"
}








Recipient Name Translation

For recipient name translation the Yandex translation API is used.
YANDEX_TRANSLATE_API_ENDPOINT and YANDEX_TRANSLATE_API_KEY have to be
set in settings.py file.

Translation is automatically activated if name_en attribute is added to a
scraper of a specific country, leave attribute for scrapers with no translation
(e.g. GB).

Yandex has the current API limits:


	1.000.000 characters per day

	10.000.000 characters per month



OpenFarmsubsidies scraping is coming close, so API usage has to be actively
managed/recorded to avoid reaching limitations.

Take the following formula for character estimates:


	(Number of recipients (wc -l)) * 15 characters/recipient



Try to stay under 80% of day/month limit, distribute (translated) scraper runs to different
days, avoid double runs.






Creating the Countries Endpoint

The countries endpoint of the API (see: Countries Endpoint) is taking the
administrated data from the Country Django model objects as a starting point.

There is a create_countries_endpoint Django management command providing the
JSON output for the API response:

python manage.py create_countries_endpoint





Recreate the API endpoint every time a country is added and integrate it in the
Backend/API python code.


Note

You can exclude a country by setting the corresponding scraper to inactive status.









          

      

      

    

  

    
      
          
            
  
Search Index (Elastic)

Searching is done with Elastic, currently the following version is used:


	Elastic 2.1.1 [https://www.elastic.co/]




Installation

Download Elastic and install in folder elasticsearch (no version number)
inside the repository.

The local dev server on http://localhost:9200 can then be started with:

./server.sh








Index Creation


Index Template

For indexing template in conf/template.json is used for mapping and has to be
activated/loaded before first data indexing:

curl -XPUT localhost:9200/_template/template_1 -d '@conf/template.json'





The current mapping for the index can be seen with:

curl -XGET 'http://localhost:9200/openfarmsubsidies/_mapping/payment?pretty'





Deleting the current template:

curl -XDELETE localhost:9200/_template/template_1





See installed templates:

curl -XGET localhost:9200/_template/








Index Management

List indices:

curl 'localhost:9200/_cat/indices?v'





Delete index:

curl -XDELETE 'localhost:9200/openfarmsubsidies?pretty'










Indexing Documents


Format Pre-Processing

Input files have to be formatted as JSON Lines format and are prepared with the
following command for indexing:

./jl2elastic inputfile.json








Indexing Documents

Index data:

curl -XPUT 'localhost:9200/openfarmsubsidies/payment/_bulk?pretty' --data-binary "@data_elastic.json"










Searching the Index

Testing search:

curl 'localhost:9200/openfarmsubsidies-test/_search?q=PERTH&pretty'











          

      

      

    

  

    
      
          
            
  
Backend/API (Python/Flask)

Backend/API for creating a simple API layer and connecting to Elastic.


Installation

Installation is done by cloning the repository and install the dependencies
from the requirements files:

pip install -r requirements.txt
pip install -r requirements_dev.txt # DEV requirements





The project uses Python 3.5 and is build upon the following main
Python/Flask libraries:


	Flask 0.10 [http://flask.pocoo.org/]



The dev server on http://127.0.0.1:5000 can be started with:

python app.py








API


General

Current version of the API: v1


Common Request Parameters








	Name
	Description
	Example Values




	start
	Result object to start with (default: 0)
	0, 9 (10th object!)


	rows
	Number of rows/objects to return (default: 10)
	1, 10, 25








Common Behaviour

API always returns aggregations for towns, years, countries and sub payments type.






Payments Endpoint

Payments endpoint can be reached at:

/[API_VERSION]/payments/





Results are sorted by amount_euro by default.


Endpoint-specific Request Parameters








	Name
	Description
	Example Values




	q
	Generic search for recipient, town or ZIP code
	Nestle,London,NR16


	name
	Recipient name
	Nestle


	country
	2-letter country code of an EU country
	GB,SI,NL,PL


	zip_code
	ZIP code of a European town
	NR16


	town
	Name of a European town or city
	London


	year
	Year of payment
	2014


	country
	2-letter country code of an EU country
	GB,SI,NL,PL


	amount_euro_gte
	Amount euro greater than given value
	2500,100000,1000000


	sub_payments_type
	Type of the sub payment in national language
	Direct Aid








Example Requests

https://[URL_TO_API]/[API_VERSION]/payments/?amount_euro_gte=5000&town=London








Example Data Set

_source: {
  town: "London",
  amount_nc: 6568,
  name: "Example Recipient",
  amount_euro: 8631.32,
  country: "GB",
  sub_payments_euro: [
    {
      amount: 8630.66,
      name: "Rural Development"
    },
    {
      amount: 0,
      name: "Direct Aid"
    },
    {
      amount: 0,
      name: "Market Schemes"
    }
  ],
  sub_payments_nc: [
    {
      amount: 6567.5,
      name: "Rural Development"
    },
    {
      amount: 0,
      name: "Direct Aid"
    },
    {
      amount: 0,
      name: "Market Schemes"
    }
  ],
  year: 2014,
  nc_conv_rate: 0.76095,
  nc_conv_date: "2016-01-26",
  zip_code: "SW7"
}





Sub payments are indexed schemaless as they are provided by the specific country
agencies.


Note

If both an amount_nc (national currency) and an amount_euro is provided,
the Euro value is not coming originally from the source but is calculated via
fixer.io API with the given conv rate at the conv date provided.








Countries Endpoint

The countries endpoint is a simple static endpoint and can be reached at:

/[API_VERSION]/payments/





It provides a list of all countries where payment data is indexed together
with some additional information like a countries responsible paying agency,
associated data and info urls and the like.

There are no request parameters supported at the moment.


Example Request

https://[URL_TO_API]/[API_VERSION]/countries/








Example Data Set

{
    "GB": {
        "name": "Great Britain",
        "agency_name": "GOV.UK - Department for Environment, Food and Rural Affairs",
        "info_url": "https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs",
        "data_url": "http://cap-payments.defra.gov.uk/",
        "nc_symbol": "GBP",
        "nc_sign": "£"
    },
    ...
    "IE": {
        "name": "Ireland",
        "agency_name": "gov.ie - Department of Agriculture, Food and the Marine",
        "info_url": "http://www.agriculture.gov.ie",
        "data_url": "http://www.agriculture.gov.ie/agri-foodindustry/euinternationalpolicy/commonagriculturalpolicycap/capbeneficiariesdatabase/paymentsdatabase/cap_ben_master.jsp",
        "nc_symbol": "",
        "nc_sign": ""
    }
}















          

      

      

    

  

    
      
          
            
  
Frontend (Boostrap/Javascript)


Installation


Requirements

Main runtime library dependencies:


	Bootstrap 4 Alpha 6 [http://v4-alpha.getbootstrap.com/]

	jQuery 3.2.1 [https://jquery.com/]



Main dev tools:


	Sass (Ruby installation) [http://sass-lang.com/]

	http-server [https://github.com/indexzero/http-server]

	(Gulp.js) [http://gulpjs.com/] (build automation)






Running the server

Run the http-server from the main folder of the repository:

http-server





Content is served on http://127.0.0.1:8080, API is expected
at http://127.0.0.1:5000.






Development

Sass sources can be compiled with:

sass sass/content.scss css/content.css





Or you can run the watch command with:

sass --watch sass/content.scss:css/content.css











          

      

      

    

  

    
      
          
            
  
Deployment


Server Setup


General

Deployment of all server parts is done on an Ubuntu 14.04 AWS/EC2 instance, Python fabric
is used for deployment automation, fabric files can be found in openfarmsubsidies-scraper repository.

The following fabric tasks are just for orientation what need to be installed/done
and are not intended to pass through, depending on your system pre-requisites:

fab prepare_system
fab install_deps





Script templates for setting up Gunicorn, Nginx and Supervisor can be
found in the conf folder.




SSL

SSL cert is created with Let’s Encrypt with the following command:

sudo /home/ubuntu/.local/share/letsencrypt/bin/letsencrypt certonly -d openfarmsubsidies.org -d www.openfarmsubsidies.org -d scraper.openfarmsubsidies.org -d api.openfarmsubsidies.org








Elasticsearch

Elasticsearch is installed as deb (Debian) package following
this instructions [https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-elasticsearch-on-ubuntu-14-04].

Installation can be found at /usr/share/elasticsearch/, start/stop is done via
init.d script sudo /etc/init.d/elasticsearch start.

Index backup can be done with:

sudo cp -Rp /var/lib/elasticsearch /var/lib/elasticsearch-backup-2017-06-28













          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up.png





nav.xhtml

    
      Table of Contents


      
        		OpenFarmsubsidies - EU Farmsubsidy Scrapers


        		Scraper (Django/DDS)
          
          		Introduction


          		Installation


          		Configuration


          		Scraper Handling
            
            		Importing/exporting Scrapers


            		Creating a new Scraper


            		Running a Scraper


            


          


          		Data Format
            
            		Scraper Format Description


            		Output Format Description


            		Recipient Name Translation


            


          


          		Creating the Countries Endpoint


          


        


        		Search Index (Elastic)
          
          		Installation


          		Index Creation
            
            		Index Template


            		Index Management


            


          


          		Indexing Documents
            
            		Format Pre-Processing


            		Indexing Documents


            


          


          		Searching the Index


          


        


        		Backend/API (Python/Flask)
          
          		Installation


          		API
            
            		General


            		Payments Endpoint


            		Countries Endpoint


            


          


          


        


        		Frontend (Boostrap/Javascript)
          
          		Installation
            
            		Requirements


            		Running the server


            


          


          		Development


          


        


        		Deployment
          
          		Server Setup
            
            		General


            		SSL


            		Elasticsearch


            


          


          


        


      


    
  

_static/minus.png





_static/comment.png





_static/comment-bright.png





_static/up-pressed.png





_static/plus.png





_static/ajax-loader.gif





_static/file.png





_static/down-pressed.png





_static/down.png





_images/screenshot_django-admin_scraper_list.png
Change password / Log out

Home > Dynamic_Scraper » Scrapers

Select scraper to change
Search]
—_—— By status
(=== %)[Go| 0of 2 selected &
()10 Name 14 Scrapedobjclass 24 | Staws Maxitems read | Max items save | Pagination type | Rpts < ACTIVE
MANUAL
1 g aymen 5 (None one)

DRl =Gt MaNuAL | (None) =) [EERNEr PAUSED
Environment INACTIVE
Department

By pagination type

) 2 IEQreland) -  Payment MANUAL §| (None) None) RANGEFUNCT 1| | i
Agriculture
Department NONE

RANGE FUNCT





_static/comment-close.png





